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1. Introduction

It is one of the most intriguing issues in string theory to prove/disprove the so-called

Maldacena conjecture between anti-de-Sitter gravity and conformal field theories [1]. A lot

of remarkable agreements have been encountered so far, so it would be more appropriate

to say one would like to determine the region of validity as precisely as possible.

This inevitably leads us to the study of less supersymmetric solutions of String/M-

theory. The spectrum of supersymmetric solutions is rich enough to provide examples with

realistic features such as confinement and asymptotic freedom (see [2] for example), and

yet thanks to the power of supersymmetry we can perform explicit checks using protected

quantities.

In this paper we will employ a technique which is found to be very powerful and at the

same time illuminating in the search for new supersymmetric backgrounds of String/M-

theory. Based on the existence of Killing spinors, one can construct various differential

forms as spinor bilinears and determine the local form of the metric and the gauge fields

exploiting the differential and algebraic relations between the differential forms which can

be derived using the Killing spinor equations. A sample of works which make use of this

technique can be found in ref. [3].

In this paper, as a sequel to the previous one [4], we analyze the consequences of su-

persymmetry in 11-dimensional supergravity, combined with the ansatz of AdS2 factor, i.e.

SO(2, 1) isometry. In particular, for simplicity, we consider pure M2-brane configurations.

A convenient way of seeing them is as M2-branes wrapped on two-cycles in a Calabi-Yau

5-fold, and the readers are referred to [5] for studies along alternative avenues on similar

configurations. In the present work, it will be shown that, the 9-dimensional internal mani-

fold should take the form of a warped U(1)-fibration on a Kähler base. We also write down

the 8-dimensional nonlinear partial differential equation for the curvature tensor, which is

required if the supersymmetric configuration is to solve the equations of motion.
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This paper is organised as follows. In section 2, we set up the problem and derive the

9-dimensional Killing equations from the 11-dimensional one. In section 3, we consider the

spinor bilinears and their derivatives to fix the local form of the metric. In section 4 we

illustrate that the well-known solutions which have AdS2 factors can be indeed cast in the

form as we have presented in this paper. In section 5 we conclude with comments and

discussions on further works.

2. Ansatz

In this article we consider supersymmetric solutions of D=11 supergravity, whose La-

grangian density in the bosonic sector is given as follows,

L = R ∗ 1− 1

2
G ∧ ∗G− 1

6
C ∧G ∧G, (2.1)

where C is the 3-form potential and G = dC.

By definition, supersymmetric backgrounds allow nontrivial solutions to the Killing

spinor equation which is obtained by setting the supersymmetry transformation to zero.

For D=11 supergravity, we thus have, for purely bosonic backgrounds,

δψM = ∇Mε+
1

288

(
Γ M1···M4
M − 8δ M1

M ΓM2M3M4

)
GM1···M4ε = 0, (2.2)

where ε is the supersymmetry parameter which is a Majorana spinor in D = 11 and

ΓM , M = 0, 1, · · · , 10 are the gamma matrices satisfying {ΓM ,ΓN} = 2gMN .

Now we restrict ourselves to a specific class of solutions which have an AdS2 factor.

We can write the metric as follows,

ds2 = e2Ads2(AdS2) + gabdx
adxb, a, b = 1, 2, · · · , 9 . (2.3)

A is the warp factor and a function of xa only, and it does not depend on the coordinates

of AdS2. Technically we are performing a dimensional reduction on AdS2 to get a 9

dimensional system from the 11 dimensional supergravity, but the Euclidean space defined

by xa will be referred to as internal. Without loss of generality we set the radius of AdS2

to 1, i.e. the scalar curvature is 2.

Furthermore, we consider electric ansatz for the field strength G, and take

G = VolAdS2 ∧ F. (2.4)

Note that most generally one can also consider turning on the 4-form fields in the internal

9 dimensional space. Our setup amounts to the consideration of pure M2-brane configu-

rations, and among other things trivializes the effect of the cubic interaction of the gauge

field C. The equation of motion and the Bianchi identity for C are reduced to the following

expressions for the two-form field F in the 9 dimensional internal space,

d(e−2A ∗ F ) = 0, dF = 0. (2.5)
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We now need to introduce the basis for the gamma matrices which is convenient for

the dimensional decomposition we have chosen to consider. With tangent space indices,

they are

Γµ = γµ ⊗ 1, µ = 0, 1, (2.6)

Γa = γ3 ⊗ γa, a = 2, · · · , 10, (2.7)

where γµ’s are the 2 dimensional gamma matrices, while γa’s denote 9 dimensional ones.

For simplicity we take the basis where all γµ and γa are real, and of course ΓM ’s are also

real matrices.

As the ansatz for the Killing spinor ε, we assume its 2 dimensional part satisfies

∇̄µε =
a

2
γµε, a = ±1. (2.8)

Here ∇̄ denotes the covariant derivative on a unit-radius AdS2. There is an alternative to

this equation, i.e. ∇̄µε = ai
2 γµγ3ε, but in 2 dimensions this just corresponds to the parity

inversion so for definiteness we choose eq. (2.8). We can then take the 11 dimensional

spinor ε = ε⊗ η + c.c., where η is a 9 dimensional spinor.

Combining the ingredients given above, it is straightforward to derive the 9 dimensional

Killing spinor equations, which can be presented as follows.

aie−Aη + /∂Aη − 1

6
e−2A/Fη = 0, (2.9)

∇aη +
1

24
e−2A

(
γ bc
a Fbc − 4Fabγ

b
)
η = 0. (2.10)

In the following we will analyze how the above equations restrict the local form of the

9-dimensional internal metric.

3. Spinor bilinears and the consequences of supersymmetry

We now consider the various spinor bilinears made out of η, and exploit the Killing spinor

equations to find the local form of the metric. We can consider the real-valued differential

forms such as

f = η†η, (3.1)

K = η†γaη dxa, (3.2)

Y =
ai

2
η†γabη dx

a ∧ dxb. (3.3)

For instance, with the zero-form f one can easily verify that, using eq. (2.9) and eq. (2.10),

∇a(η†η) =
1

3
e−2AFacη

†γcη (3.4)

= ∂aAη
†η, (3.5)

implying that one can set η†η = eA. We proceed in the same way and find that ∇aKb +

∇bKa = 0, i.e. K defines a Killing vector in the internal space, and

d(eAK) = F + Y. (3.6)

– 3 –
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For the two-form Y , we get simply

dY = 0. (3.7)

Now we can choose the coordinate system where K = ∂ψ and the metric of the internal

space is

ds2 = e2φ(dψ +B)2 + gijdy
idyj i, j = 1, 2, · · · , 8. (3.8)

φ,B are respectively a scalar and a vector field defined on the 8 dimensional space M8

with coordinates yi.

Now we claim that, when the 9 dimensional internal space is compact, η is a chiral

spinor on M, and as a result φ = A. We will need to make use of the following identities

which hold for an arbitrary Dirac spinor η in 9-dimensions.

(ηT η)2 = (ηT γaη)2, (3.9)

|ηT η| − |ηTγaη|2 = 2(η†γaη)2 − 2(η†η)2, (3.10)

whose derivation can be found in ref. [6].

We consider the spinor bilinear ηT η, which is complex-valued. From the Killing equa-

tions we get

∂a(e
−AηT η) = aie−2A ηT γaη. (3.11)

For D = e−AηT η, we thus have (∇aD)2 = −e−4A(ηT γaη)2 = −e−2AD2. One can also show

that, from the Killing equations eq. (2.9) and eq. (2.10),

∇2(e−AηT η) = ai∇a(e−2AηTγaη)

= −2e−3AηT η, (3.12)

i.e. ∇2D+ 2e−2AD = 0. From these relations, it is easy to see that ∇2(D−1) = 0 provided

D is not zero. If the internal space is compact, this is possible only if D is constant, but it

means D = 0, so we have a contradiction. We thus conclude ηT η = ηT γaη = 0, and from

eq. (3.10) η is chiral on M8 and we have K2 = e2φ = e2A.

Obviously the above argument requires the internal space should be compact, and A

should not show a singular behavior. But in the next section we will show that, for the

important class of solutions such as AdS4 × SE7 and the bubbling geometry of ref. [7],

even though the internal manifolds are not compact, the solutions can be rewritten in the

manner we will conclude in this section. We guess that it might be possible to improve our

proof for the chirality of η, without assuming compact internal space.

Now that η is chiral, Y is a closed two-form in M8, which can be used to define an

almost complex structure. In order to see whether this complex structure is integrable or

not, one needs to check the exterior derivative of the complex-valued (4, 0)-form Ω, defined

as

Ωabcd = ηTγabcdη. (3.13)

The chirality of η again restricts Ω to be a four-form on M8, and as usual with SU(n)-

structures, J,Ω satisfy

VolM8 =
e−4A

24
J ∧ J ∧ J ∧ J =

e−2A

16
Ω ∧ Ω̄, J ∧ Ω = 0. (3.14)
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Using the Killing equations one obtains

d(eAΩ) = −aie−AK ∧Ω. (3.15)

For ω ≡ eAe−iaψΩ and using K = e2A(dψ +B), we have

dω = −aiB ∧ ω, (3.16)

which is an 8 dimensional equation onM8. From the general result of SU(n)-structures and

the classification of torsion classes, we arrive at the conclusion that the complex structure

given by Y is integrable and dB = R is the Ricci form of the Kähler manifold M8.

Considering Y 2 ∼ (η†η)2 ∼ e2A and ω2 ∼ e2A|ηT η|2 ∼ e4A when evaluated using the

metric g, it is the rescaled metric ḡij = eAgij which is Kähler.

One can rephrase eq. (3.6) to get

F = F̄ + 3eAdA ∧K, (3.17)

e3AR = F̄ + Y, (3.18)

where F̄ is the two-form field F restricted to M8. Now if we contract eq. (2.9) with η†,
we have F̄ijY

ij = −6e−2A. We thus have the expression for the scalar curvature R of M8

whose Kähler metric is given as ḡ,

R = 2e−3A. (3.19)

Consideration of other spinor bilinears does not generate independent equations, but

we need to impose the Bianchi identity and the equation of motion for F , to guarantee that

the supersymmetric configuration really satisfies all the equations of motion [10]. It turns

out that dF = 0 is a consequence of supersymmetry, as can be easily seen from eq. (3.6)

and eq. (3.7). Using the equation of motion for F , ∇a(e−2AFab) = 0, and eq. (3.4), one

can derive the following equation for the scalar curvature of M8.

¤R− 1

2
R2 +RijR

ij = 0. (3.20)

We conclude that, our ansatz of supersymmetric AdS2 requires the metric should locally

be written as

ds2 = e2Ads2
AdS2

+ e2A(dψ +B)2 + e−Aḡijdyidyj, (3.21)

where ḡ defines a Kähler metric, and dB is the Ricci form of the 8 dimensional base space

with coordinates yi.

4. Examples of AdS2 solutions and their Kähler geometry

In this section we will illustrate that several classes of well-known solutions which include

an AdS2 factor can be indeed written in the form given as eq. (3.21).

The simplest case is obtained when we take M8 = S2 × T 6. Being related to the

curvature scalar of M8, A is a constant, and the eleven dimensional spacetime becomes

AdS2 × S3 × T 6, where the radius of S3 is twice as large as that of AdS2. This solution

– 5 –
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is a well-known example, which is given as the near-horizon limit of three M2-branes

intersecting over a point. As such, the preserved supersymmetry is in fact 1/4 for this

solution.

We next consider AdS4 × SE7 solutions where SE7 is a 7 dimensional Sasaki-Einstein

manifold. They can be considered as the near-horizon limit of M2-brane solutions when

put on a singularity of Calabi-Yau 4-folds. As such, in general these solutions are 1/8-BPS.

It is well known that in canonical form, any Sasaki-Einstein manifolds can be written as

a U(1)-fibration over a Kähler-Einstein manifold. For SE7, using the standard convention,

ds2 = (dα+
σ

4
)2 + ds2

KE6
, (4.1)

where dσ = R = 8J . R is the Ricci form and J is the Kähler form of the 6 dimensional

Kähler-Einstein manifold. In the following we will rewrite the 11-dimensional metric in a

form where the 8-dimensional Kähler structure is manifest.

ds2 =
1

4
ds2
AdS4

+ ds2
SE7

=
1

4

[
cosh2 ρ ds2

AdS2
+ dρ2 + sinh2 ρdφ2

]
+
(
dα+

σ

4

)2
+ ds2

KE6

=
1

4
cosh2 ρ ds2

AdS2
+

1

4
cosh2 ρ

(
dφ+ 2

dα̃ + σ/4

cosh2 ρ

)2

+
2

cosh ρ

(
cosh ρ

2
(
dρ2

4
+ ds2

KE6
) +

sinh2 ρ

2 cosh ρ

(
dα̃+

σ

4

)2
)
, (4.2)

where we put α→ α̃+ φ/2.

Compared to the general form of the solution given in eq. (3.21), evidently we expect

that the 8-dimensional metric

ds2 =
cosh ρ

2

(
dρ2

4
+ ds2

KE6

)
+

sinh2 ρ

2 cosh ρ

(
dα̃+

σ

4

)2
(4.3)

should be Kähler, and the Ricci-form is given as

R = d

(
2
dα̃+ σ/4

cosh2 ρ

)
, (4.4)

with the scalar curvature

R =
16

cosh3 ρ
, (4.5)

and finally, eq. (3.20) should be satisfied.

In order to check this, it is most efficient to construct the almost Kähler form J and

the (4, 0)-form Ω, and compute their exterior derivatives. A reasonable guess for J is

J =
1

4
sinhρdρ ∧

(
dα̃+

σ

4

)
+

cosh ρ

2
JKE6 . (4.6)

One can readily check that dJ = 0. From the complex structure given by J , the (4,0)-form

Ω is given as

Ω =
cosh ρ

8

(
cosh ρdρ+ 2i sinh ρ

(
dα̃+

σ

3

))
∧ΩKE6 . (4.7)

– 6 –
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One can also check that, as required by eq. (4.4),

dΩ =
2i

cosh2 ρ
(dα̃+

σ

4
) ∧ Ω. (4.8)

And eq. (3.20) is indeed satisfied.

The next example is the 1/2-BPS bubbling geometry of M-theory giant gravitons

obtained in [7]. This class of solutions describe generic 1/2-BPS operators of M2-brane

or M5-brane conformal field theories. From superalgebra arguments, such configurations

should possess SO(3) × SO(6) symmetry, which are realized as a S2 × S5 factor in the

metric. S2 can be treated as a Wick-rotated AdS2 to fit into our result. Another comment

in order is that now the canonical Killing vector made out of the Killing spinor becomes

time-like, so our solutions can describe magnetic, or M5-branes, as well as electric or M2-

brane configurations. The solutions are summarized as follows.

ds2
11 = −4e2λ(1 + y2e−6λ)(dt+ Vidx

i)2 +
e−4λ

1 + y2e−6λ
[dy2 + eD(dx2

1 + dx2
2)]

+4e2λdΩ2
5 + y2e−4λdΩ̃2

2

G = F ∧ dΩ̃2
2

e−6λ =
∂yD

y(1− y∂yD)

Vi =
1

2
εij∂jD or dV =

1

2
∗3 [d(∂yD) + (∂yD)2dy]

F = dBt ∧ (dt+ V ) +BtdV + dB̂

Bt = −4y3e−6λ

dB̂ = 2 ∗3 [(y∂2
yD + y(∂yD)2 − ∂yD)dy + y∂i∂yDdx

i]

= 2∗̃3[y2(∂y
1

y
∂ye

D)dy + ydxi∂i∂yD] (4.9)

where i, j = 1, 2 and ∗3 is the three dimensional ε symbol of the metric dy2 + eDdx2
i and

∗̃3 is the flat space ε symbol. The function D satisfies the equation

(∂2
1 + ∂2

2)D + ∂2
ye
D = 0. (4.10)

In order to see the Kähler structure the metric of the equation let us first rewrite (4.9)

as follows,

ds2
11 = y2e−4λdΩ̃2

2 + 4e2λ[(dα +
σ

3
)2 + ds2

KE4
]

−4e2λ(1 + y2e−6λ)(dt+ V )2

+
e−4λ

1 + y2e−6λ
[dy2 + eD(dx2

1 + dx2
2)], (4.11)

where the 4-dimensional Kähler-Einstein manifold is CP 2, which provides the Kähler-

Einstein base for the trivial example of 5-dimensional Sasaki-Einstein manifold S 5. In fact,

as far as supersymmetry is concerned, any 4-dimensional Kähler-Einstein manifold would

suffice as long as it satisfies R = 6J = dσ.

– 7 –
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If we define α = α̃+ t, then the metric can be rewritten as

ds2
11 = y2e−4λdΩ̃2

2 − 4y2e−4λ[dt− e6λ

y2
(dα̃ +

σ

3
− (1 + y2e−6λ)V )]2

+
4

ye−2λ

{
e6λ

y
(1 + y2e−6λ)(dα̃ +

σ

3
− V )2

+
1

4

ye−6λ

1 + y2e−6λ
[dy2 + eD(dx2

1 + dx2
2)] + yds2

KE4

}
. (4.12)

Now we are ready to identify the Kähler structure of the M-theory bubbling solution. The

Kähler form of the 8-dimensional base space is given by

J = −1

4
∂y(e

D)dx1 ∧ dx2 +
1

2
dy ∧ (dα̃ +

σ

3
− V ) + yJKE4 , (4.13)

where JKE4 is the Kähler form of KE4. One can easily show that J is closed, and for the

(4, 0)-form given as

Ω = 4yeD/2
(
∂yDdy + 2i(dα̃ +

σ

3
− V )

)
∧ (dx2 + idx1) ∧ yΩKE4, (4.14)

and also we indeed have, as expected from the twisting of the U(1)-fibration in the metric,

dΩ = 2i

(
e6λ

y2
(dα̃+

σ

3
)− e6λ + y2

y2
V

)
∧ Ω. (4.15)

5. Discussions

In this work we have studied supersymmetric M2-brane configurations which have a factor

of AdS2. They can be interpreted as the near-horizon limit of M2-branes, whose worldvol-

ume is wrapped on a 2-cycle in a Calabi-Yau 5-fold. In general, they are thus 1/16-BPS.

It turns out that the internal 9-dimensional manifold should take a form of U(1)-fibration

whose base manifold is given by a Kähler manifold. There is a restriction on the Kähler

base imposed by supersymmetry: we have found a Laplace-like equation for the scalar

curvature and Ricci tensor, as given in eq. (3.20).

The result presented in this article is amusingly very similar to the result of [4], where

pure D3-brane configurations with AdS3 are studied. In that case, the internal manifold

is 7-dimensional, which again takes the form of warped U(1)-fibration on a 6-dimensional

Kähler manifold. The Kähler base cannot be arbitrary, it has to satisfy a nonlinear partial

differential equation for the curvature.

It is certainly of great interest to find new AdS solutions, by directly trying to solve

eq. (3.20). In fact, recently a new class of AdS3 solutions in IIB supergravity has been

presented [8]. The authors first studied AdS3 solutions of 11-dimensional supergravity,

and then, through T-duality operations, obtained AdS3 solutions of IIB supergravity, where

only the five-form fluxes are turned on. This is of course very similar to the discovery of the

celebrated Sasaki-Einstein solutions Y p,q as part of AdS5 solutions in IIB supergravity [9].

In particular, it was argued that the new solutions can be indeed written in the form as

– 8 –
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presented in [4]. The relevant 6-dimensional Kähler manifold takes a form of S 2-bundle

over a 4-dimensional Kähler-Einstein manifold. It will be very interesting to introduce such

a concrete ansatz, and solve eq. (3.20). We expect, as is the case with Y p,q, the metric of

the Kähler base might be in general not complete, but the entire 9-dimensional internal

manifold can be made complete. We plan to present the new solutions and the global

analysis in a future publication.

Another interesting direction is to interpret our solutions as generalized bubbling ge-

ometry. For the case of AdS5 × S5 solutions in IIB supergravity, the 1/2-BPS bubbling

solutions given in [7] can be described in terms of a distribution function in the phase space

of 1-dimensional free fermions. For M-theory, determining the solutions is instead reduced

to solving a Toda equation in 3-dimensions, and we believe the dynamics of 1/2-BPS op-

erators must be encoded therein. The supergravity solutions dual to less supersymmetric

giant graviton operators are considered for 1/8-BPS in ref. [4] and for 1/4-BPS in ref. [11].

They both conclude that the 10 dimensional solution is based on a Kähler space which is 6

and 4-dimensional, respectively. Naturally one expects they originate from the symplectic

structure of the eigenvalue dynamics. Likewise, eq. (3.20) can be interpreted as the equa-

tion governing the dynamics of generic supersymmetric operators of M-branes conformal

field theory. One important feature we have been ignoring in this paper is the global prop-

erty and the boundary conditions of the solutions. Since our analysis is general enough

to encompass the 1/2-BPS fluctuations of less supersymmetric conformal field theories on

M-branes, as well as less supersymmetric fluctuations of maximal conformal field theories

on M-branes, we will first need to fix the boundary condition according to the conformal

field theory we are interested in, and then solve eq. (3.20) to find gravity duals to BPS

operators.
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